首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72511篇
  免费   2754篇
  国内免费   3919篇
  2023年   664篇
  2022年   908篇
  2021年   2210篇
  2020年   1239篇
  2019年   1597篇
  2018年   1241篇
  2017年   950篇
  2016年   1558篇
  2015年   3523篇
  2014年   6884篇
  2013年   6267篇
  2012年   5116篇
  2011年   5863篇
  2010年   4202篇
  2009年   3734篇
  2008年   3868篇
  2007年   4138篇
  2006年   2725篇
  2005年   2385篇
  2004年   1508篇
  2003年   1255篇
  2002年   1099篇
  2001年   854篇
  2000年   754篇
  1999年   766篇
  1998年   646篇
  1997年   532篇
  1996年   603篇
  1995年   705篇
  1994年   603篇
  1993年   646篇
  1992年   587篇
  1991年   582篇
  1990年   502篇
  1989年   497篇
  1988年   464篇
  1987年   393篇
  1986年   370篇
  1985年   599篇
  1984年   892篇
  1983年   571篇
  1982年   756篇
  1981年   739篇
  1980年   543篇
  1979年   534篇
  1978年   329篇
  1977年   360篇
  1976年   327篇
  1974年   237篇
  1973年   235篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.

Background

We previously reported that the σ1-receptor (σ1R) is down-regulated following cardiac hypertrophy and dysfunction in transverse aortic constriction (TAC) mice. Here we address how σ1R stimulation with the selective σ1R agonist SA4503 restores hypertrophy-induced cardiac dysfunction through σ1R localized in the sarcoplasmic reticulum (SR).

Methods

We first confirmed anti-hypertrophic effects of SA4503 (0.1–1 μM) in cultured cardiomyocytes exposed to angiotensin II (Ang II). Then, to confirm the ameliorative effects of σ1R stimulation in vivo, we administered SA4503 (1.0 mg/kg) and the σ1R antagonist NE-100 (1.0 mg/kg) orally to TAC mice for 4 weeks (once daily).

Results

σ1R stimulation with SA4503 significantly inhibited Ang II-induced cardiomyocyte hypertrophy. Ang II exposure for 72 h impaired phenylephrine (PE)-induced Ca2 + mobilization from the SR into both the cytosol and mitochondria. Treatment of cardiomyocytes with SA4503 largely restored PE-induced Ca2 + mobilization into mitochondria. Exposure of cardiomyocytes to Ang II for 72 h decreased basal ATP content and PE-induced ATP production concomitant with reduced mitochondrial size, while SA4503 treatment completely restored ATP production and mitochondrial size. Pretreatment with NE-100 or siRNA abolished these effects. Chronic SA4503 administration also significantly attenuated myocardial hypertrophy and restored ATP production in TAC mice. SA4503 administration also decreased hypertrophy-induced impairments in LV contractile function.

Conclusions

σ1R stimulation with the specific agonist SA4503 ameliorates cardiac hypertrophy and dysfunction by restoring both mitochondrial Ca2 + mobilization and ATP production via σ1R stimulation.

General significance

Our observations suggest that σ1R stimulation represents a new therapeutic strategy to rescue the heart from hypertrophic dysfunction.  相似文献   
992.

Background

The recent morphological studies on chaperonins have revealed that nearly equivalent amount of symmetric GroEL–(GroES)2 (football-shaped) and asymmetric GroEL–GroES (bullet-shaped) complexes coexist during the chaperonin reaction cycle, which prompted us to reexamine the equatorial split observed for chaperonin from Thermus thermophilus by implementing semi-empirical molecular orbital (MO) calculations, since it is now believed that the symmetric formation is a precursor to the equatorial split.

Methods

Semi-empirical MO calculations were employed to investigate the intersubunit interactions within the bullet-shaped T. thermophilus chaperonin capturing the substrate of folding intermediates. Interaction energies between each cis-GroEL subunit and closely related remaining subunits in cis-GroEL ring, or in trans-GroEL ring across the equatorial plane, and further, interaction energies between each GroES subunit and adjacent subunits in the same GroES ring and in cis-GroEL ring were simulated.

Results

Anisotropic intensities and energy distribution of the subunits were revealed by the calculations, which are consistent with two conformations of the subunits forming cis-GroEL ring as revealed by X-ray crystal structure, and with an anisotropic critical binding site on cis-GroEL ring for chaperonin functioning.

Conclusions

This is the first application of semi-empirical MO calculations to the macromolecular complex of the native bullet-shaped chaperonin (GroEL–GroES–ADP homolog) from T. thermophilus.

General significance

The results also appear to support the occurrence of the equatorial split for T. thermophilus chaperonin observed via electron microscopy, but has not yet been fully observed for Escherichia coli GroEL–GroES system.  相似文献   
993.

Background

Myeloperoxidase (MPO) is an abundant hemoprotein expressed by neutrophil granulocytes that is recognized to play an important role in the development of vascular diseases. Upon degranulation from circulating neutrophil granulocytes, MPO binds to the surface of endothelial cells in an electrostatic-dependent manner and undergoes transcytotic migration to the underlying extracellular matrix (ECM). However, the mechanisms governing the binding of MPO to subendothelial ECM proteins, and whether this binding modulates its enzymatic functions are not well understood.

Methods

We investigated MPO binding to ECM derived from aortic endothelial cells, aortic smooth muscle cells, and fibroblasts, and to purified ECM proteins, and the modulation of these associations by glycosaminoglycans. The oxidizing and chlorinating potential of MPO upon binding to ECM proteins was tested.

Results

MPO binds to the ECM proteins collagen IV and fibronectin, and this association is enhanced by the pre-incubation of these proteins with glycosaminoglycans. Correspondingly, an excess of glycosaminoglycans in solution during incubation inhibits the binding of MPO to collagen IV and fibronectin. These observations were confirmed with cell-derived ECM. The oxidizing and chlorinating potential of MPO was preserved upon binding to collagen IV and fibronectin; even the potentiation of MPO activity in the presence of collagen IV and fibronectin was observed.

Conclusions

Collectively, the data reveal that MPO binds to ECM proteins on the basis of electrostatic interactions, and MPO chlorinating and oxidizing activity is potentiated upon association with these proteins.

General significance

Our findings provide new insights into the molecular mechanisms underlying the interaction of MPO with ECM proteins.  相似文献   
994.

Background

Proteins are extremely reactive to oxidants and should represent a potential target of instable reactive oxygen. This may represent a problem for plasma proteins since they may be directly modified in vivo in a compartment where antioxidant enzymatic systems are scarcely represented. On the other hand, it is possible that some plasma components have evolved over time to guarantee protection, in which case they can be considered as anti-oxidants.

Scope of review

To present and discuss main studies which addressed the role of albumin in plasma antioxidant activity mainly utilizing in vitro models of oxidation. To present some advances on structural features of oxidized albumin deriving from studies carried out on in vitro models as well as albumin purified in vivo from patients affected by clinical conditions characterized by oxidative stress.

Major conclusions

There are different interaction with HOCl and chloramines. In the former case, HOCl produces an extensive alteration of 238Trp and 162Tyr, 425Tyr, 47Tyr, while thiol groups are only partially involved. Chloramines are extremely reactive with the unique free SH group of albumin (34Cys) with the formation of sulfenic and sulfinic acid as intermediates and sulfonic acid as end-product. Oxidized albumin has a modified electrical charge for the addition of an acidic residue and presents α-helix and random coil reorganization with subtle changes in domain orientation.

General significance

Albumin, is the major antioxidants in plasma with a concentration (0.8 mM) higher than other antioxidants by an exponential factor. Functional and protective roles in the presence of oxidative stress must be defined. This article is part of a Special Issue entitled Serum Albumin.  相似文献   
995.

Background

Stem cell therapy is a strategy far from being satisfactory and applied in the clinic. Poor survival and differentiation levels of stem cells after transplantation or neural injury have been major problems. Recently, it has been recognized that cell death-relevant proteins, notably those that operate in the core of the executioner apoptosis machinery are functionally involved in differentiation of a wide range of cell types, including neural cells.

Scope of review

This article will review recent studies on the mechanisms underlying the non-apoptotic function of mitochondrial and death receptor signaling pathways during neural differentiation. In addition, we will discuss how these major apoptosis-regulatory pathways control the decision between differentiation, self-renewal and cell death in neural stem cells and how levels of activity are restrained to prevent cell loss as final outcome.

Major conclusions

Emerging evidence suggests that, much like p53, caspases and Bcl-2 family members, the two prime triggers of cell death pathways, death receptors and mitochondria, may influence proliferation and differentiation potential of stem cells, neuronal plasticity, and astrocytic versus neuronal stem cell fate decision.

General significance

A better understanding of the molecular mechanisms underlying key checkpoints responsible for neural differentiation as an alternative to cell death will surely contribute to improve neuro-replacement strategies.  相似文献   
996.

Background

Diabetes is a growing worldwide problem that is strongly associated with atherosclerosis. Screening and intervention for diabetes in the earliest stages are advocated for the prevention of diabetic complications and cardiovascular disease.

Scope of review

This review gives a background of and discusses the potential clinical utility of glycated albumin (GA) in diabetes.

Major conclusions

GA is a ketoamine formed via a non-enzymatic glycation reaction of serum albumin and it reflects mean glycemia over two to three weeks. GA can be used for patients with anemia or hemoglobinopathies for whom the clinically measured hemoglobin A1c level may be inaccurate. Because both serum and plasma samples can be used, GA can be analyzed from the same samples as common biological markers. GA is a useful marker for the screening of diabetes in a medical evaluation. It can be also used to determine the effectiveness of treatment before initiating or changing medications for diabetic patients. GA is potentially an atherogenic protein in the development of diabetic atherosclerosis.

General significance

GA measurement is useful as part of a routine examination to screen for both diabetes and atherosclerosis. This article is part of a Special Issue entitled Serum Albumin.  相似文献   
997.

Background

The cell death pathway activated after photodynamic therapy (PDT) is controlled by a variety of parameters including the chemical structure of the photosensitizer, its subcellular localization, and the photodynamic damage induced. The present study aims to characterize a suitable m-THPPo liposomal formulation, to determine its subcellular localization in HeLa cells and to establish the cell death mechanisms that are activated after photodynamic treatments.

Methods

Liposomes containing m-THPPo were prepared from a mixture of DPPC and DMPG at a 9:1 molar ratio. In order to procure the best encapsulation efficiency, the m-THPPo/lipid molar ratio was considered. HeLa cells were incubated with liposomal m-THPPo and the subcellular localization of m-THPPo was studied. Several assays such as TUNEL, annexin V/propidium iodide and Hoechst-33258 staining were performed after photodynamic treatments. The apoptotic initiation was assessed by cytochrome c and caspase-2 immunofluorescence.

Results

m-THPPo encapsulated in liposomes showed a decrease of the fluorescence and singlet oxygen quantum yields, compared to those of m-THPPo dissolved in tetrahydrofuran. Liposomal m-THPPo showed colocalization with LysoTracker® and it induced photoinactivation of HeLa cells by an apoptotic mechanism. In apoptotic cells no relocalization of cytochrome c could be detected, but caspase-2 was positive immediately after photosensitizing treatments.

Conclusions

Photodynamic treatment with liposomal m-THPPo leads to a significant percentage of apoptotic morphology of HeLa cells. The activation of caspase-2, without the relocalization of cytochrome c, indicates a mitochondrial-independent apoptotic mechanism.

General significance

These results provide a better understanding of the cell death mechanism induced after liposomal m-THPPo photodynamic treatment.  相似文献   
998.
The effect of fungi–termite interaction on three rice varieties was conducted in a screen house at the Africa Rice Center (AfricaRice) Ibadan, Nigeria. Of the 10 fungi species (Fusarium verticilloides, Trichoderma sp., Aspergillus niger, Aspergillus flavus, Macrophoma sp., Neurospora sp., Botryodiplodia theobromae, Penicillum sp., Rhizopus sp. and Sclerotium rolfsii) isolated from termites, soil and rice plants, F. verticilloides, Trichoderma sp. and B. theobromae were used for the interaction study. Each fungus was inoculated singly and in combinations with termite into the root of each rice variety in potted soil. Leaf samples were taken to measure the chlorophyll content which is a major parameter to estimate effect of termite–fungi interaction. The chlorophyll content of the inoculated rice plants was significantly reduced when compared with the control. Fungi interaction with termite had significant reduction on the chlorophyll content. The synergistic relationship between the fungi and the termite was discussed.  相似文献   
999.
Abstract

Panama disease of banana (Musa spp) caused by the fungus Fusarium oxysporum f. sp. Cubense (FOC), is a serious constraint both to the commercial production of banana and cultivation for subsistence agriculture. Chemical control is not economically effective and is also hazardous to the environment and human health. Breeding for disease resistance is an alternative strategy, which leads to the development of resistance clones. Field evaluation is the most reliable method of screening for disease resistance, but it is demanding in terms of cost, manpower and space requirements. Another approach of screening hybrids at the sucker's stage (planting material) through biochemical markers has been found to be effective in early identification of resistant hybrids. The resistance mechanisms involving the role of phenol, PAL, oxidative enzymes like peroxidase (PO), polyphenol oxidase (PPO), superoxide dismutase (SOD), catalase and PR-proteins like chitinase, β-1-3 glucanase were studied and they showed relatively higher activity in resistant hybrids than susceptible hybrids. Isozyme analysis of peroxidase (PO) and polyphenol oxidase (PPO) was also carried out in cultivars and hybrids, which revealed the induction of specific isoforms in the resistant hybrids upon challenge inoculation. This could be a useful tool for early identification of F. oxysporum f. sp. cubense resistance banana clones.  相似文献   
1000.
It has been well-established that many epiphytic bromeliads of the atmospheric-type morphology, i.e., with leaf surfaces completely covered by large, overlapping, multicellular trichomes, are capable of absorbing water vapor from the atmosphere when air humidity increases. It is much less clear, however, whether this absorption of water vapor can hydrate the living cells of the leaves and, as a consequence, enhance physiological processes in such cells. The goal of this research was to determine if the absorption of atmospheric water vapor by the atmospheric epiphyte Tillandsia usneoides results in an increase in turgor pressure in leaf epidermal cells that subtend the large trichomes, and, by using chlorophyll fluorescence techniques, to determine if the absorption of atmospheric water vapor by leaves of this epiphyte results in increased photosynthetic activity. Results of measurements on living cells of attached leaves of this epiphytic bromeliad, using a pressure probe and of whole-shoot fluorescence imaging analyses clearly illustrated that the turgor pressure of leaf epidermal cells did not increase, and the photosynthetic activity of leaves did not increase, following exposure of the leaves to high humidity air. These results experimentally demonstrate, for the first time, that the absorption of water vapor following increases in atmospheric humidity in atmospheric epiphytic bromeliads is mostly likely a physical phenomenon resulting from hydration of non-living leaf structures, e.g., trichomes, and has no physiological significance for the plant's living tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号